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A B S T R A C T

In this paper, we propose an efficient 3-node shell element with 6 DOFs per node based on Naghdi-Reissner-
Mindlin theory. This new composite shell element, further denoted as DKMT18, takes into account shear de-
formation and coupled bending-membrane energy. DKMT18 element passes membrane, bending, and shear
patch tests with no spurious mode. It also performs successfully in standard tests for thick and thin shells pro-
blems without membrane or shear locking. The proposed shell element is capable of dealing with composite
laminated shell structures. The computed results by the DKMT18 element converge more rapidly towards the
reference solution compared to any state of-the-art shell element.

1. Introduction

The two basic approaches used to formulate general shell elements
are: plate bending and membrane superimposed that leaves two effects
uncoupled versus formulations based on three-dimensional continuum
mechanics that can take such coupling into account. The first approach
of superimposing plate bending and membrane is very simple and can
be effective for some applications. For this reason, we rely here on a
general continuum mechanics based approach for the shell theory of
Naghdi-Reissner-Mindlin [1–7].

The finite element based on such formulation could converge to the
exact solution, irrespective of the shell geometry, and adequately ac-
counts for membrane, bending, coupled membrane-bending, and shear
effects. For modeling of complex engineering structures, triangular fi-
nite elements are frequently used. The triangular shell elements can
also more successfully deal with major difficulty in the development of
shell finite elements, related to the locking phenomenon for bending
dominated shells [8–11].

Locking cure for membrane and shear has been an interesting topic
of research. Many different techniques have been proposed. The re-
duced and selective integration techniques [12–22] are the most
straightforward cure that can successfully reduce the numerical
locking. However, reduced and selective integration can also result in
rank deficiency due to spurious modes. An alternative treatment for
locking is the Assumed Natural Strains (ANS) [23–25] method that
exhibits better accuracy and robustness. One of the simplest and

effective transverse shear formulation is proposed by Hughes and
Taylor [26] for a 3-node plate bending element. The more refined ANS
is first used for 4-node shell element, referred to as MITC4 (Mixed In-
terpolation of Tensorial Components), that has been widely used in
engineering practice [27].

Lee and Bathe [28] also proposed a 3-node MITC3 shell element, but
this element is not free of shear locking. When exact integration is
performed, the MITC3 element locks. If one point is used for the eva-
luation of the shear energy, locking is avoided, but the element has one
spurious mode. More recently, the MITC3+ [29] as a new 3-node tri-
angular shell finite element was developed (Lee et al., 2014) to improve
the performance of MITC3. Here a cubic bubble function is used for the
interpolation of the rotations to enrich the bending displacement fields.
Similarly, a new MITC4+ shell element was developed [30] to provide
a significantly improved performance in distorted meshes compared to
the MITC4 shell element [27].

Our previous work on the subject builds on top of the development
of 3-node DKT [31] and 4-node DKQ [32] elements for thin plate using
Discrete Shear and Assumed Natural Strains (ANS) methods to elim-
inate shear strains [10]. DKT and DKQ elements rely on the Reissner-
Mindlin plate model and only impose discrete Kirchhoff constraint to
eliminate shear effects. The first attempts to include the shear strain
with a triangular element, called DST (Discrete Shear Triangular) [33],
and with quadrilateral element, called DSQ (Discrete Shear Quad-
rilateral) [34]. Unfortunately, in the thick plate problem, neither of
these pass the patch test. DST-BK was proposed by Batoz and Katili [35]
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to improve the DST element. The formulation uses a free formulation
method and incompatible modes. DST-BK element passes the patch tests
and gives good results in thin and thick plate problems. Another di-
rection in previous works is the PQI plate element with a set of in-
compatible modes for bending proposed in [36–38]. In thin plates
problems, this element gives similar performance as the DKQ element.
Moreover, the element PQI also gives excellent performance in thick
plates analysis without using any adjusted parameters. DKMT and
DKMQ elements, based on Reissner-Mindlin [6,7] hypothesis, also in-
troduced by Katili [39,40] to analyze thick and thin plate problems.
These elements require only C0 continuity. The applications of DKMQ
and DKMT elements in plate and shell problems are presented in
[41–54].

The objective of this paper is to build upon our previous works and
provide the corresponding extension to composite problems. The pro-
posed element has three nodes and six DOFs per node and is called the
DKMT18 element. This new shell element takes into account coupled
bending-membrane energy. The DKMT18 element passes the classical
patch tests in thick and thin plate problems and provides the solutions
converging more quickly towards the reference solutions without shear
locking and any spurious modes.

The paper is organized as follows. The kinematic hypothesis for the
shell model and the choice of reference frames are explained in Section
2. The formulation of the DKMT18 element is defined in Section 3 with
the details of membrane deformation, curvatures strains, and the as-
sumed shear strain field. The stiffness matrix for membrane, bending,
and shear for the DKMT18 element, including fictitious stiffness, is
defined in Section 4. In Section 5, we present the results of numerical
simulation for various isotropic and composite shells, including several
classical benchmark tests. Concluding remarks are stated in Section 6.

2. The Naghdi/Reissner-Mindlin shell theory

This section starts with the formulation of Naghdi/Reissner/Mindlin
shell theory as a direct extension of the Reissner-Mindlin thick plate
theory.

The geometry of the shell is presented in Fig. 1. The position vector
x p~ is in the middle surface, and the position vector xq~ at an arbitrary
point q can be expressed as

= +x z x z n~ ( , , ) ~ ( , ) ~ ( , )q p (1)

where the normal vector n~ of the element is constant in the element.

We note in passing that the shell geometry will be interpolated by
triangular elements, which allows us to write:

= +
= =

x z N x z N n~ ( , , ) ( , ) ~ ( , ) ~q
i

i i
i

i i
1

3

1

3

(2)

here x p~ is the position vector at the shell middle surface and xq~ is the
position vector along the fiber (z≠ 0) orthogonal to the middle surface
ni~ . The Cartesian coordinate representation of the shell-mid-surface is
reconstructed with isoparametric shell element using Ni (ξ, η) are the
shape functions (see Table 1) depending on the parametric coordinates
(ξ, η) of shell reference element (see Fig. 1).

The isoparametric coordinates allow us to construct more easily the
derivative with respect to a local Cartesian basis. Namely, we first de-
fine the covariant coordinates by using the natural coordinates of an
isoparametric shell element at point p as

= =dx
dX
dY
dZ

a a d
d~ [~ ~ ]p 1 2

(3)

where vectors a1~ and a2~ are tangent vectors along ξ and η. Note that a1~
and a2~ are in general not orthogonal, and that they are used to construct
the covariant basis. Vectors a1~ and a2~ are easily computed by using the
isoparametric representation:

= =

= =
=

=

a x N x

a x N x
~ ~ ~

~ ~ ~

p i i i

p i i i

1 , 1
3

,

2 , 1
3

, (4)

The local Cartesian basis at z = 0, is then written:

=
= ×
= ×

×

F a a n
F a a n

n

[ ] [ ]
det[ ] ( ).

o

o
a a
a a

1 2

1 2

| |

~ ~ ~

~ ~ ~

~
~1 ~2

~1 ~2 (5)

The length ds on the shell surface can be expressed by:

= = < >ds dx dx d d a d
d

( ) ~ . ~ [ ]2

(6)

where [a] denotes the metric tensor in the middle surface. Its coordinate
representation is the symmetric, positive-definite matrix, which is de-
fined as:

= =

= > >
>

a a a
a a

a a a a
a a a a

a a a a
a

[ ] . .
. .

det[ ] ; 0 ; 0
det[ ] 0

11 12
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2 1 2 2

11 22
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(7)

The area of infinitesimal surface element dA~ can then be obtained
as:

= ×
= ×

= =

dA a d a d
dA a a d d n

dA a d d n dA n

~ ~ ~
~ |~ ~ | ~

~ ~ ~

1 2

1 2

(8)

=dA a d d (9)

By simple calculations, we further produce the contravariant vectors
a1
~ and a2

~ , which satisfy the orthogonality relations

= = = =a a a a a a a a. . 1 ; . . 01
1

2
2

1
2

2
1~ ~ ~ ~ ~ ~ ~ ~

The contravariant vectors allow obtaining the inverse matrix F[ ]o
1,

which can be written asFig. 1. Geometry of DKMT18 shell element.

Table 1
Linear and quadratic functions.

=N 11 =P 4(1 )4
=N2 =P 45
=N3 =P 4(1 )6
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=
=

F a a n
a a a a a
[ ] [ ]

[ ] [ ][ ]
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1 2
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1
~ ~ ~

~ ~ ~ ~ (10)

The contravariant base vectors a1
~ anda2

~ can be written explicitly as:

=

= +

a a a a a

a a a a a

( )

( )
a

a

1 1
22 1 12 2

2 1
21 1 11 2

~ ~ ~

~ ~ ~ (11)

The relationship (3) can now be written in compact notation:

= < >
< >

d
d

a
a

dX
dY
dZ

1

2
(12)

The relation of differential calculation between global coordinate
and local coordinates system is expressed as (Fig. 2):

=
dX
dY
dZ

Q
dx
dy
dz

[ ]
(13)

where:

=
= ×
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Q t t n
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By combining Eqs. (12) and (13), we can easily obtain the desired derivatives with

respect to local Cartesian coordinates, from known values of the derivatives with respect to

natural coordinates

=
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The final results needed pertains to the local cartesian basis at an
arbitrary point q (z ≠ 0). Such local basis, further denoted as [Fz] can
be written as:

= = +
= +

F a a n F z F
F F I z b

[ ] [ ] [ ] [ ]
[ ] [ ]([ ] [ ])

z z z n

z n

1 2 0

0
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(16)

where [I] as the identity matrix, =F n n[ ] [ 0]n ,~ ~ ~ , whereas [bn] can be
written explicitly as

=

= =

b F F
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b b
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[ ] [ ] [ ] or
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(17)

With these results in hand, we can easily write the corresponding
strain measures for the strain in a shell model of this kind. The shell
membrane strain can be written in matrix notation as

= =e
e
e
e

t

t
t
t

C
u
u{ }

~
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0
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p
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,

,
(18)

where t1~ and t2~ are tangent vectors to shell mid surface, and Co is de-
fined in Eq. (15).

Assuming that the motion from reference to the deformed config-
uration of the shell normal is fully described by rotations vector ~,which remains independent from displacement field, the shell curvature
component can be expressed as

= +
t

t
t
t
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u
u C

~
0
~

0
~
~

[ ] ~
~

[ ] ~

~

x

y

xy

T p

p
o T

1

2

2

1

,

,

,

, (19)

where

= =

=

=

bc bc bc
bc bc b C
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b b

b
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2
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,
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,

1
, (20)

The coefficient bc11 = bc12 = bc21 = bc22 = 0 when n~ is a constant
per element

Finally, the shell shear strain can be written as

= =
+
+C

a u n
a u n{ } [ ] ~ . ~ ~ . ~

~ . ~ ~ . ~
x

y
o T p

p

1 ,

2 , (21)

where ~ is the rotation of the normal vector n~ is orthogonal to the shell
surface.

3. Discrete approximation for DKMT18 shell element

The DKMT18 shell element has 18 degrees of freedom, three dis-
placements and three rotations at each node i defined as
U V W, , , , ,i i i X Y Zi i i (Fig. 3). DKMT18 uses a linear functions for
the approximation of displacement in the middle surface, u~ ( , )p and
an incomplete quadratic polynomial for the interpolation of rotations

~( , )

=
=

u N
U
V
W

~ ( , ) ( , )p
i

i

i

i

i1

3

(22)

= +
= =

N P t~( , ) ( , ) ~ ( , ) ~
i

i i
k

k s s
1

3

4

6

k k (23)

where

= × =n t
x
L~ ~ ~ ; ~
~

i i i s
ji

k
k (24)

Fig. 2. Local coordinate system x, y, z, and global coordinate system X, Y, Z at
any point p at shell mid-surface.
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Substituting (24) into (23), we obtain

= +
= =

N RN P t~ [ ] ~
i

i i
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1
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6
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[ ]
0

0
0

i i i i

i

Zi Yi
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Here sk(k = 4, 5, 6) is a supplementary dof at each side of the
element (Fig. 4).

Along the side of i-j, we have

= + +s
L

s
L

s
L

s
L

1 4 1s
k

s
k

s
k k

si j k (27)

= +s
L

s
L

1m
k

m
k

mi j (28)

where Lk is the length of the side k. The rotation components sand m
are defined according

= =
=

t t
t t n
~·~ ; ~·~
~ ~ ~

s s m m

m s k

k k

k k (29)

where t sk~ and t mk~ (k = 4, 5, 6) are the unit vector tangential and
normal to the side of k (Fig. 5).

From (22) and (18), the approximation for membrane strains is

given by:

=e B u{ } [ ]{ }m n (30)

where:

=
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From (22–29) and (19), the discrete approximation for curvature
tensor is

= +B u B{ } [ ]{ } [ ]{ }b n b sn (33)
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where bc11, bc11, bc11, and bc11, are defined in Eq. (20).

=
+

= +
= +

< > =

=

B
t t P
t t P

t t P t t P

P P C P C
P P C P C

[ ]
~ . ~
~ . ~

~ . ~ ~ . ~
b

s k x

s k y

s k y s k x
k

k x k
o

k
o

k y k
o

k
o

s s s s
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k

k
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n 4 5 6 (35)

We next illustrate the proposed manner for dealing with locking in
shear in term of assumed shear strains. The assumed shear strain field is
assumed constants along each side (Fig. 6) of the element. The corre-
sponding discrete value is first computed in the normal-tangential co-
ordinate system and then transform the resulting expressions to the
local coordinate system.

Fig. 3. Nodal degrees of freedom for DKMT18 shell elements.

Fig. 4. Variation of rotation βm and βs along the sides of DKMT18 shell element.

Fig. 5. Normal tangential coordinate system s-m witht sk~ and t mk~ as the unit
vector on side i-j.
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= =
=

N{ } ( , )x
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3
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i (36)

Shear deformation at node i, i.e., xi
dan yi

can be found by pro-
jecting sk

on side k (Fig. 6) to node i
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where: = =C t t S t t. ; .k s k s1 2k k~ ~ ~ ~ (Fig. 6). From (37) above, we further
get
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where

=
=
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1 4 6 6 4

2 5 4 4 5
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Introducing (38) into (36), we finally have

= B{ } [ ]{ }s sn (40)

where
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= < > ={ }s s
T s s s

T
n n 4 5 6 (42)

For isotropic material, we can also follow [40,41], to express the
assumed independent transverse shear strain

s
along the side i-j

= D
D

,
s

b

s
s ss (43)

while for composite material we can also follow [46]

= +H H H H( )
s

sk
inv

bk sk
inv

bk s ss21 32 22 22 , (44)

where s remains the same as previously defined in (27). The assumed
independent shear strain

s
on side-k (k = 4, 5, 6) (Fig. 6) is expressed

as

= 2
3s

k s
k

k (45)

For an isotropic material this lead for this result with
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and for orthotropic material is
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From Eq. (45) we get

=

= A

0 0
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s

s

s

s

s

s

s s
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Finally, combining (50) and (40) we obtain

= = B A{ } [ ][ ]{ }x

y
s sn (51)

On each side i-j, we recall that u p~ has a linear variation in s, as
defined in (22), and the rotation ~s has a quadratic variation in s, as
defined in (27), (see Fig. 4)

= +u n t~ . ~ ~·~s p s s, k (52)

By using variational principal of Hu-Washisu [50,55], we can de-
fine:

Fig. 6. Constant assumed shear strain on side i-j.
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= =
L

ds k1 ; 4, 5, 6s
k

L
s0k

k
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Substituting (52) into (53), we obtain
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Substituting (45) into (54) we obtain on each side
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L
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k
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where n~ is the unit exterior normal vector on the element. Moreover,
from (22) and (27) we get
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Finally, from (55) and (56), we have
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If we applied (57) on all three sides, {Δβsn} becomes a function of
degrees of freedom {un}, namely

= A A u{ } [ ] [ ]{ }s u n
1

n (58)

where:
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Substituting (58) into (33) we have
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Substituting (58) into (51) the expression of transversal shear strain
deformation, we obtain

=

=

B u

B B A A

{ } [ ( , )]{ }

[ ( , )] [ ( , )][ ][ ]

s n

s s u (61)

where:

= =

+

+

+

A A A[ ] [ ][ ]

0 0

0 0

0 0

1

(1 )

(1 )

(1 )

4
4

5
5

6
6 (62)

4. Stiffness matrix of DKMT18 shell element

In this section, we write the final form of element arrays. The
membrane energy is expressed as:

= =e H e dA u k u1
2

[ ]{ } 1
2

[ ]{ }m
A m n m nint (63)

Fig. 7. Hemispherical Shell.

Table 2
Deflection UA (UA = UA × 103) Pinched hemispherical shell.

N DKMT18 DKMQ24 MITC4

4 95.911 97.935 93.284
8 94.151 94.811 92.848
16 92.806 93.359 92.878
32 92.932 93.372 93.305
64 93.311 93.484 93.517

REF [57]: 94.000

Fig. 8. Convergence of Deflection UA for the pinched hemispherical shell.
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where:

=k B H B dA[ ] [ ] [ ] [ ]m A m
T

m m (64)

The membrane strain matrix B[ ]m for DKMT18 is defined in (31). The
bending energy is given by

= < >

= < >

H dA

u k u

[ ] { }

[ ] { }

b
A b

b
n b n

int
1
2

int
1
2 (65)

with

=k B H B dA[ ] [ ] [ ] [ ]b A b
T

b b (66)

The bending strain matrix B[ ]b for DKMT18 is the same as already
defined in (60). The membrane-bending coupling effects energy is given
by

= < >

+ < >

= < > +

e H dA

H e dA

u k k u

[ ]{ }

[ ]{ }

([ ] [ ] ){ }

mb
A mb

A mb

mb
n mb mb

T
n

int
1
2

1
2

int
1
2 (67)

with

=k B H B dA[ ] [ ] [ ] [ ]mb A m
T

mb b (68)

Finally, transversal shear strain energy is

= < >

= < >

H dA

u k u

[ ] { }

[ ] { }

s
A s

s
n s n

int
1
2

int
1
2 (69)

with

=k B H B[ ] [ ] [ ] [ ] dAs A s
T

s s (70)

The shear strain matrix B[ ]s for DKMT18 is defined in (61).
The stiffness matrix [k] is the assembly of the stiffness matrices

accounting for all contributions due to membrane, bending, coupled
membrane-bending and transverse shear:

= + + + +k k k k k k[ ] [ ] [ ] [ ] [ ] [ ]m b mb mb
T

s (71)

The stiffness matrix is determined using the Hammer numerical
integration rule. To avoid the danger related to spurious modes, we use
a fictitious stiffness.

= +

= < >

D dA

k

10 ( )

[ ]{ }

m
A

z x z x z y z y

n n

int
1
2

3
, , , ,

int
1
2

z

z
z (72)

Fig. 9. Scordelis–Lo roof problem.

Table 3
Deflection WB and WC.

N WB

DKMT18 DKMQ24 MITC4

4 −2.665 −3.425 −3.418
8 −3.171 −3.528 −3.539
16 −3.475 −3.585 −3.613
32 −3.573 −3.604 −3.641
64 −3.602 −3.619 −3.650
Deep shell theory REF [58]: −3.610
Shallow Shell theory REF [58]: −3.703

N WC

DKMT18 DKMQ24 MITC4

4 0.394 0.513 0.508
8 0.473 0.529 0.530
16 0.520 0.538 0.543
32 0.536 0.541 0.548
64 0.540 0.544 0.550
Deep Shell REF [58]: 0.541
Shallow Shell REF [58]: 0.525

Table 4
Convergence of NYB and MXC.

N DKMT18 DKMQ24 MITC4

NYB MXC NYB MXC NYB MXC

4 350.830 1.400 498.43 1.874 496.73 1.808
8 533.490 1.806 592.68 1.998 593.17 1.979
16 609.490 1.984 620.75 2.041 623.12 2.047
32 630.030 2.038 628.28 2.054 631.55 2.068
64 633.710 2.053 631.11 2.061 633.9 2.075

Shallow Shell REF [58]: NYB = 641.000 ; MXC = 2.056
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= < >

= < >

=

=

N n

N n n n

( , ) ( , ) { }

( , )

z i i i n

z i X Y Z

X

Y

Z

1
3

1
3

i i i

i

i

i (73)

= C[ ]z x

z y
o T z

z

,

,

,

, (74)

The size of Matrix [kθz] is expanded from (9 × 9) into (18 × 18) to
adjust the nodal variables in the element stiffness matrix. The

stabilization of fictitious stiffness proposed by MacNeal [47,50,56]. We
define

= = < >D dA u k u1
2

10 (¯ · ¯ ) 1
2

[ ] { }m
A

z z n nint
z̄ 3

z
(75)

where we used a small arbitrary factor of stabilization of 10−3 that will
not affect the results but will enable us to avoid singularities. The final
form of the stiffness matrix is:

= + + + +k k k k k k[ ] [ ] [ ] [ ] [ ] [ ]m b s z z (76)

With the addition of fictitious stiffness into (71), the spurious modes

Fig. 10. Convergence of deflection WB and WC.

Fig. 11. Convergence of NYB and MXC for the Scordelis–Lo roof problem.

Fig. 12. Pinched cylindrical shell with end diaphragms.
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will vanish, and we obtained six rigid body motion per element stiffness
in (76).

5. Numerical simulations

We first present the validation test introduced for isotropic material
by Mac Neal and Harder [57]. We then present the results for composite
shell problems.

5.1. The hemispherical shell

The hemispherical shell (R/h = 250) presented in Fig. 7 is often
used to evaluate the performance of a thin shell. This problem is in-
troduced to prove the absence of membrane locking. On shell boundary,
we impose free boundary conditions, except at 4-points under con-
centrated loads. Only a quarter of the structure is considered due to
symmetry. The deflection values under concentrated loads are equal
and opposite, UA = −VB, are presented in Table 2 and Fig. 8. The
chosen quarter ABCD is divided with N× N×2 for triangular elements
and N × N for quadrilateral elements. The Symmetry conditions are
V = θX = θZ = 0 on the side AC; U = θY = θZ = 0 on the side BC.
While the Boundary conditions are W = 0 at point C. In this problem,
we use R = 10 m; h = 0.04 m; R/h = 250; P = 1 N; E = 6.825 ×
107Pa; υ = 0.3. The reference solution is UA = −VB = 0.094 m.

Based on classical shell theory, the reference value is UA = 0.094 m.
From Table 2 and Fig. 8, we found that DKMT18 element converges
slightly faster than MITC4 element. The proposed shell element also
gives better result, closer to the reference value.

5.2. Scordelis–Lo roof problem

The shell structures presented in Fig. 9 is a benchmark problem
which is used to compare the shell element performance between flat
facet approach and curved isoparametric shell. A quarter of the struc-
ture is used in the computation. Chosen cylindrical shell geometry and
mechanical characteristics are defined in Fig. 9. One-quarter ABCD is
discretized with N × N × 2 for triangular elements and N × N for
quadrilateral elements. This shell is loaded by dead load applied as
vertical load fz = −0,625 × 104 Pa distributed across the surface. In
this test L = 6 m; R= 3 m; h = 0.03 m; ϕ = 40o; E= 3× 1010Pa and υ
= 0 are evaluated. The Boundary condition are U = W = θY = 0 on
the side AD while the Symmetry condition are U = θY = θZ = 0 on the
side CD and V= θX = θZ=0 on the side CB. Reference value (theory of
deep shell) is WB = −3.61 cm and WC = 0.541 cm and Analytical
solution (theory of shallow shell): WB = −3.703 cm and
WC = 0.525 cm [58].

Tables 3 and 4, and Figs. 10 and 11 present the results of the nu-
merical test for DKMT18, DKMQ24, and MITC4 elements. We found
that the DKMT18 element converges with a lower rate, but it gives close
results to DKMQ24 and MITC4 starting from N = 32.

5.3. Pinched cylindrical shell with end diaphragms

The shell presented in Fig. 12 is a pinched cylinder loaded with two
concentrated loads applied in the middle of the span in the opposite
direction. At both ends of the cylinder, there is a rigid diaphragm that
produces is a localized deflection around applied point load. Giving a
complex deformation pattern where the bending effect dominates the
structure under concentrated load, the example is a difficult test for the
shell element. One-quarter of the shell is discretized with N × N × 2
for triangular elements and N × N for quadrilateral elements.

Data: L = 6 m; R = 3 m; h = 0.03 m and 0.3 m; υ = 0,3;
E = 3 × 1010 Pa

Boundary condition: U = W = θY = 0 on the side AD
Symmetry conditions: W = θY = θX = 0 on the side AB;

V = θX = θZ = 0 on the side BC; U = θY = θZ = 0 on the side CD
We consider two cases:

Case 1. Reference value (R/h = 100); WC = Eh WC/P = −164.24

Case 2. Reference value (R/h = 10); WC = Eh WC/P = −11.351

In this case, DKMT18 and DKMQ24 element provide much better
results than the MITC4 element, which is due to a more precise quad-
ratic interpolation for the rotation field used in DKMT18 and DKMQ24,
which is superior to the MITC4 element, which uses linear interpolation
functions. The results are computed for R/h = 100 and R/h = 10. For
R/h = 100, an analytical solution was proposed by Lindberg et al. [59]
or Flügge [60], obtained by the Fourier series. For R/h = 10, the

Table 5
Deflection WC of Pinched cylindrical shell.

N R/h = 100

DKMT18 DKMQ24 MITC4

4 −81.1652 −101.295 −60.957
8 −142.093 −155.214 −122.094
16 −160.795 −167.391 −152.586
32 −164.766 −167.571 −155.214
64 −166.514 −167.589 −157.158
REF [59] −164.240

N R/h = 10

DKMT18 DKMQ24 MITC4

4 −9.616 −9.426 −10.301
8 −9.679 −10.392 −10.962
16 −9.576 −11.041 −11.540
32 −9.564 −11.897 −11.640
64 −9.555 −12.528 −11.727
REF [61] −11.351

Fig. 13. Convergence of deflection WC.
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analytical solutions are presented in Bhaskar and Varadan [61]. In each
of these two cases, only 1/8 of the cylinder is used for computations,
accounting for the symmetries.

The numerical results for vertical displacement WC for R/h = 100
and 10, are presented in Tables 5 and Fig. 13. We found that DKMT18
and DKMQ24 elements converge much faster than the MITC4 element.

5.4. Three–layer and Ten-layer cylindrical shell with sinusoidal pressure

A 3-layer and 10-layer cylindrical shell with sinusoidal pressure are

Fig. 14. Three-layered cylindrical shell.

Table 6
Convergence of central deflection WC 3-layered cylindrical shell (R/h = 50).

N × M R/h = 50

DKMT18 DKMQ24 MITC4

4 × 5 0.4739 0.4411 0.3411
8 × 10 0.5229 0.5156 0.4909
16 × 20 0.5411 0.5380 0.5319
32 × 40 0.5446 0.5439 0.5423
64 × 80 0.5467 0.5464 0.5461
REF [63] 0.5495

Table 7
Convergence of central deflection WC 3-layered cylindrical shell (R/h = 100
and R/h = 500).

N × M R/h = 100

DKMT18 DKMQ24 MITC4

4 × 5 0.3873 0.3766 0.2957
8 × 10 0.4468 0.4447 0.4247
16 × 20 0.4653 0.4647 0.4598
32 × 40 0.4704 0.4700 0.4687
64 × 80 0.4712 0.4714 0.4611
REF [63] 0.4715

N × M R/h = 500

DKMT18 DKMQ24 MITC4

4 × 5 0.0607 0.0779 0.0736
8 × 10 0.0899 0.0960 0.0950
16 × 20 0.0993 0.1011 0.1008
32 × 40 0.1019 0.1023 0.1023
64 × 80 0.1024 0.1026 0.1026
REF [63] 0.1027

Table 8
Convergence of central deflection WC 10-layered cylindrical shell (R/h = 10
and R/h = 50).

N × M R/h = 10

DKMT18 DKMQ24 MITC4 DKT18

4 × 5 1.2211 1.2158 1.0531 0.8108
8 × 10 1.2880 1.3046 1.2645 0.7971
16 × 20 1.3278 1.3381 1.3279 0.7966
32 × 40 1.3425 1.3469 1.3441 0.7965
64 × 80 1.3668 1.3636 1.3628 0.8130
REF [63] 1.3800

N × M R/h = 50

DKMT18 DKMQ24 MITC4 DKT18

4 × 5 0.6302 0.6178 0.4778 0.6195
8 × 10 0.7228 0.7235 0.6885 0.7088
16 × 20 0.7534 0.7548 0.7461 0.7369
32 × 40 0.7618 0.7629 0.7607 0.7439
64 × 80 0.7687 0.7678 0.7673 0.7469
REF [63] 0.7622

Table 9
Convergence of central deflection WC 10-layered cylindrical shell (R/h = 100
and R/h = 500).

N × M R/h = 100

DKMT18 DKMQ24 MITC4 DKT18

4 × 5 0.4826 0.4983 0.3983 0.4811
8 × 10 0.5853 0.5917 0.5669 0.5832
16 × 20 0.6167 0.6188 0.6126 0.6142
32 × 40 0.6250 0.6258 0.6242 0.6221
64 × 80 0.6269 0.6274 0.6271 0.6238
REF [63] 0.6261

N × M R/h = 500

DKMT18 DKMQ24 MITC4 DKT18

4 × 5 0.0578 0.0755 0.0721 0.0578
8 × 10 0.0872 0.0938 0.0927 0.0872
16 × 20 0.0970 0.0989 0.0983 0.0970
2 × 40 0.0997 0.1002 0.0997 0.0997
64 × 80 0.1002 0.1005 0.0992 0.1002
REF [63] 0.1006
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analyzed. Due to symmetry condition, only one quarter of the shell is
evaluated, as shown in Fig. 14. This test was earlier proposed as the
benchmark by Ren [62], and then revisited by Varadan et Bhaskar [63],
who provide the analytic solution. The details of this test are internal
sinusoidal loading Q= f0 sin(πY/L) cos(4θ); 3-layered 90/0/90 and 10-
layered (90/0/90/0/90)s; L = 80 m; R = 20 m; EL = 25 MPa;
ET = 1 MPa ; υLT = 0.25; GLT = 0.5 MPa; GTZ = 0.2 MPa. The
boundary condition: U=W= θY = 0 on the side AD and the symmetry
conditions:W= θY = θX = 0 on the side AB ; V = θX = θZ = 0 on the
side BC; U = θY = θZ = 0 on the side CD.

The reference value of central displacement is given by [63]:

= =W E
f S h

W S R
h

10 ;
C

L
C

0
4

Tables 6–9 and Figs. 15–18 show the comparison of the DKMT18
element with DKMQ24 and MITC4 elements for different ratios of R/h.

Fig. 15. Convergence of central deflection WC of 3-layered cylindrical shell (R/
h = 50).

Fig. 16. Convergence of central deflection WC of 3-layered cylindrical shell (R/h = 100 and R/h = 500).

Fig. 17. Convergence of central deflection WC of 10-layered cylindrical shell (R/h = 10 and R/h = 50).

Fig. 18. Convergence of central deflection WC of 10-layered cylindrical shell (R/h = 100 and R/h = 500).
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In this case, we discretized N × M × 2 for triangular elements and
N × M for quadrilateral elements. For the 3-layered 90/0/90 case, the
three elements give very good results compared to the reference solu-
tion. We can see that DKMT18 and DKMQ24 elements converge faster
than the MITC4 element for R/h = 50 and 100. While for R/h = 500,
the DKMT18 element converges with a lower rate.

For the 10-layered case, as presented in Tables 8 and 9 and Figs. 17
and 18, once again, we found that DKMT18 and DKMQ24 elements
converge faster than the MITC4 element. In Tables 8 and 9, the results
for the DKT18 element are presented to see the contributions of
transverse shear effects. For R/h= 10, the DKT18 element converges to
another value due to the absence of transverse shear effects in the
formulation of the element. When R/h = 50 and R/h = 100, as the
contributions of transverse shear effects are smaller, the results of the
DKT18 element become closer to the reference solution. We found the
same results for DKMT18 and DKT18 when R/h = 500, where the
contributions of transverse shear effects are neglected.

6. Conclusions

The presented DKMT18 shell element is a new three nodes with 18
DOFs. This element uses an incomplete quadratic interpolation for the
rotation field, capable of dealing with both thick and thin isotropic and
composite shell problems.

DKMT18 element is capable of equally reproducing the behavior of
both the theory of the Kirchhoff and the Reissner-Mindlin, due to the
use of a shear influence factor ϕk, which is a function of shell thickness
ratio, which also explains the favorable position of the DKMT18 ele-
ment relative to the MITC3 and DKT18 shell elements [46]. The
DKMT18 element will become identical to the MITC3 element when ϕk

become very big. On the other hand, the DKMT18 element become
identical to the DKT18 element when ϕk become very small.

The numerical results show that this element can pass all standard
validation tests, without shear locking as the DKMT plate element [39].
In bending dominated problems, results obtained with the DKMT18
element are excellent, and the convergence is much faster than with
MITC4. These are due to the quadratic interpolation functions for the
rotations used in DKMT18. For composite structures, the DKMT18
element also gives a good performance and provides results close to the
reference solution. So, we can use the DKMT18 element as an alter-
native formulation in analyzing isotropic and composite structures.
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